Compressive Sensing of Roller Bearing Faults via Harmonic Detection from Under-Sampled Vibration Signals
نویسندگان
چکیده
The Shannon sampling principle requires substantial amounts of data to ensure the accuracy of on-line monitoring of roller bearing fault signals. Challenges are often encountered as a result of the cumbersome data monitoring, thus a novel method focused on compressed vibration signals for detecting roller bearing faults is developed in this study. Considering that harmonics often represent the fault characteristic frequencies in vibration signals, a compressive sensing frame of characteristic harmonics is proposed to detect bearing faults. A compressed vibration signal is first acquired from a sensing matrix with information preserved through a well-designed sampling strategy. A reconstruction process of the under-sampled vibration signal is then pursued as attempts are conducted to detect the characteristic harmonics from sparse measurements through a compressive matching pursuit strategy. In the proposed method bearing fault features depend on the existence of characteristic harmonics, as typically detected directly from compressed data far before reconstruction completion. The process of sampling and detection may then be performed simultaneously without complete recovery of the under-sampled signals. The effectiveness of the proposed method is validated by simulations and experiments.
منابع مشابه
Multi-Scale Hermitian Wavelet Order Envelope Spectrum Based Bearing Fault Detection and Diagnosis
The multi-scale Hermitian wavelet order envelope spectrum based bearing fault detection and diagnosis method under run-up condition is presented in this paper. This new approach based on the fusion of the computed order tracking, Hermitian wavelet transform and envelope spectrum is used for detection defects in roller element bearings. Firstly, Non-stationary vibration signal under run-up condi...
متن کاملTacholess Envelope Order Analysis and Its Application to Fault Detection of Rolling Element Bearings with Varying Speeds
Vibration analysis is an effective tool for the condition monitoring and fault diagnosis of rolling element bearings. Conventional diagnostic methods are based on the stationary assumption, thus they are not applicable to the diagnosis of bearings working under varying speed. This constraint limits the bearing diagnosis to the industrial application significantly. In order to extend the convent...
متن کاملBearing Fault Detection Based on Maximum Likelihood Estimation and Optimized ANN Using the Bees Algorithm
Rotating machinery is the most common machinery in industry. The root of the faults in rotating machinery is often faulty rolling element bearings. This paper presents a technique using optimized artificial neural network by the Bees Algorithm for automated diagnosis of localized faults in rolling element bearings. The inputs of this technique are a number of features (maximum likelihood estima...
متن کاملOrder Bi-spectrum For Bearing Fault Monitoring and Diagnosis Under Run-up Condition
Varying speed machinery condition detection and fault diagnosis are more difficult due to non-stationary machine dynamics and vibration. Therefore, most conventional signal processing methods based on time invariant carried out in constant time interval are frequently unable to provide meaningful results. This paper deals with the detection of bearing faults in gearbox under non-stationary run-...
متن کاملOn Various Specialized Vibration Techniques for Detection of Bearing Faults
Detection of bearing faults from raw time domain or frequency domain data is extremely difficult in view of the fact that there are a very large number of frequency components present in these signals. For this reason, other specialized signal processing techniques have been tried out. Experiments were carried out on a specially fabricated bearing test rig with variable speed drive and hydrauli...
متن کامل